New approach to real-time nucleic acids detection: folding polymerase chain reaction amplicons into a secondary structure to improve cleavage of Förster resonance energy transfer probes in 5′-nuclease assays
نویسنده
چکیده
The article describes a new technology for real-time polymerase chain reaction (PCR) detection of nucleic acids. Similar to Taqman, this new method, named Snake, utilizes the 5'-nuclease activity of Thermus aquaticus (Taq) DNA polymerase that cleaves dual-labeled Förster resonance energy transfer (FRET) probes and generates a fluorescent signal during PCR. However, the mechanism of the probe cleavage in Snake is different. In this assay, PCR amplicons fold into stem-loop secondary structures. Hybridization of FRET probes to one of these structures leads to the formation of optimal substrates for the 5'-nuclease activity of Taq. The stem-loop structures in the Snake amplicons are introduced by the unique design of one of the PCR primers, which carries a special 5'-flap sequence. It was found that at a certain length of these 5'-flap sequences the folded Snake amplicons have very little, if any, effect on PCR yield but benefit many aspects of the detection process, particularly the signal productivity. Unlike Taqman, the Snake system favors the use of short FRET probes with improved fluorescence background. The head-to-head comparison study of Snake and Taqman revealed that these two technologies have more differences than similarities with respect to their responses to changes in PCR protocol, e.g. the variations in primer concentration, annealing time, PCR asymmetry. The optimal PCR protocol for Snake has been identified. The technology's real-time performance was compared to a number of conventional assays including Taqman, 3'-MGB-Taqman, Molecular Beacon and Scorpion primers. The test trial showed that Snake supersedes the conventional assays in the signal productivity and detection of sequence variations as small as single nucleotide polymorphisms. Due to the assay's cost-effectiveness and simplicity of design, the technology is anticipated to quickly replace all known conventional methods currently used for real-time nucleic acid detection.
منابع مشابه
New approach to real-time nucleic acids detection: folding polymerase chain reaction amplicons into a secondary structure to improve cleavage of Förster resonance energy transfer probes in 50-nuclease assays
The article describes a new technology for real-time polymerase chain reaction (PCR) detection of nucleic acids. Similar to Taqman, this new method, named Snake, utilizes the 50-nuclease activity of Thermus aquaticus (Taq) DNA polymerase that cleaves dual-labeled Förster resonance energy transfer (FRET) probes and generates a fluorescent signal during PCR. However, the mechanism of the probe cl...
متن کاملUse of extremely short Förster resonance energy transfer probes in real-time polymerase chain reaction
Described in the article is a new approach for the sequence-specific detection of nucleic acids in real-time polymerase chain reaction (PCR) using fluorescently labeled oligonucleotide probes. The method is based on the production of PCR amplicons, which fold into dumbbell-like secondary structures carrying a specially designed 'probe-luring' sequence at their 5' ends. Hybridization of this seq...
متن کاملPreimplantation genetic diagnosis of beta-thalassemia using real-time polymerase chain reaction with fluorescence resonance energy transfer hybridization probes.
Preimplantation genetic diagnosis (PGD) is employed increasingly to allow transfer of embryos to the uterus in assisted reproduction procedures. There are three stages of biopsy: polar bodies, one or two blastomeres from the cleavage-stage embryos, and trophectoderm cells ( approximately 5cells) from the blastocyst-stage embryos. Validation of polymerase chain reaction (PCR)-based assays are ch...
متن کاملDetection and quantification of genetically modified organisms using very short, locked nucleic acid TaqMan probes.
Many countries have introduced mandatory labeling requirements on foods derived from genetically modified organisms (GMOs). Real-time quantitative polymerase chain reaction (PCR) based upon the TaqMan probe chemistry has become the method mostly used to support these regulations; moreover, event-specific PCR is the preferred method in GMO detection because of its high specificity based on the f...
متن کاملRevealing Nucleic Acid Mutations Using Förster Resonance Energy Transfer-Based Probes
Nucleic acid mutations are of tremendous importance in modern clinical work, biotechnology and in fundamental studies of nucleic acids. Therefore, rapid, cost-effective and reliable detection of mutations is an object of extensive research. Today, Förster resonance energy transfer (FRET) probes are among the most often used tools for the detection of nucleic acids and in particular, for the det...
متن کامل